Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Respir Res ; 25(1): 180, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664797

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Induced Pluripotent Stem Cells , Respiratory Mucosa , Humans , Induced Pluripotent Stem Cells/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/cytology , Cell Differentiation/physiology , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Organoids/metabolism
2.
Biol Open ; 13(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-37982514

The ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction, and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte, which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies, which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans.


Oocytes , Stem Cell Transplantation , Adult , Animals , Humans , Cell Nucleus , Amphibians , Cellular Reprogramming , Mammals
3.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38100545

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
4.
bioRxiv ; 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37693487

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.

5.
Development ; 150(11)2023 06 01.
Article En | MEDLINE | ID: mdl-37260147

Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.


Epidermal Growth Factor , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Epidermal Growth Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Shape , Epithelial Cells/metabolism , Lung , Stem Cells/metabolism , Intercellular Junctions/metabolism , Integrins/metabolism
6.
Cell Stem Cell ; 30(1): 20-37.e9, 2023 01 05.
Article En | MEDLINE | ID: mdl-36493780

Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease.


Cell Differentiation , Lung , Organoids , Humans , Infant, Newborn , Alveolar Epithelial Cells/metabolism , Cell Differentiation/physiology , Cell Lineage , Lung/embryology , Respiratory Tract Diseases/embryology , Respiratory Tract Diseases/metabolism
7.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Article En | MEDLINE | ID: mdl-36493756

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Fetus , Lung , Humans , Cell Differentiation , Gene Expression Profiling , Lung/cytology , Organogenesis , Organoids , Atlases as Topic , Fetus/cytology
8.
Development ; 149(18)2022 09 15.
Article En | MEDLINE | ID: mdl-36106564

The Human Developmental Biology Initiative (HDBI) is a Wellcome-funded research consortium involving scientists based in institutions across the UK and Europe. It aims to pioneer new technologies and techniques to answer fundamental questions about human development and could, therefore, eventually improve treatments for fertility, birth defects and developmental diseases, as well as aiding regenerative medicine. HDBI research relies on human fetal and embryonic tissues donated following pregnancy terminations or fertility treatment. The situations in which these tissues are donated, their use in research and the potential healthcare impacts of this work all present complex ethical and moral questions that are of interest not only to scientists but also to the public. As such, HDBI's public engagement programme 'What makes us human?' aspires to test new ways of engaging the public with fundamental biology. In this brief Perspective, we provide an overview of this public engagement approach, exploring its challenges and opportunities, and outline our longer-term plans. We hope that by sharing our experiences we will encourage and enable others to organise similarly experimental public engagement, even if their research is very fundamental or potentially controversial.


Biology , Europe , Humans
9.
EMBO J ; 41(21): e111338, 2022 11 02.
Article En | MEDLINE | ID: mdl-36121125

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Lung , SOX9 Transcription Factor , Stem Cells , Humans , Cell Differentiation/physiology , Lung/embryology , Signal Transduction , SOX9 Transcription Factor/metabolism , Stem Cells/metabolism
10.
Front Pharmacol ; 13: 1083017, 2022.
Article En | MEDLINE | ID: mdl-36712670

Organoids have become a prominent model system in pulmonary research. The ability to establish organoid cultures directly from patient tissue has expanded the repertoire of physiologically relevant preclinical model systems. In addition to their derivation from adult lung stem/progenitor cells, lung organoids can be derived from fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling pulmonary development in vitro. Recent years have seen important progress in the characterisation and refinement of organoid culture systems. Here, we address several open questions in the field, including how closely organoids recapitulate the tissue of origin, how well organoids recapitulate patient cohorts, and how well organoids capture diversity within a patient. We advocate deeper characterisation of models using single cell technologies, generation of more diverse organoid biobanks and further standardisation of culture media.

11.
Elife ; 102021 10 06.
Article En | MEDLINE | ID: mdl-34612202

Human organoid systems recapitulate key features of organs offering platforms for modelling developmental biology and disease. Tissue-derived organoids have been widely used to study the impact of extrinsic niche factors on stem cells. However, they are rarely used to study endogenous gene function due to the lack of efficient gene manipulation tools. Previously, we established a human foetal lung organoid system (Nikolic et al., 2017). Here, using this organoid system as an example, we have systematically developed and optimised a complete genetic toolbox for use in tissue-derived organoids. This includes 'Organoid Easytag', our efficient workflow for targeting all types of gene loci through CRISPR-mediated homologous recombination followed by flow cytometry for enriching correctly targeted cells. Our toolbox also incorporates conditional gene knockdown or overexpression using tightly inducible CRISPR interference and CRISPR activation which is the first efficient application of these techniques to tissue-derived organoids. These tools will facilitate gene perturbation studies in tissue-derived organoids facilitating human disease modelling and providing a functional counterpart to many ongoing descriptive studies, such as the Human Cell Atlas Project.


CRISPR-Cas Systems , Organoids , Gene Knockdown Techniques/methods , Gene Targeting/methods , Humans , Lung/cytology
12.
Sci Rep ; 10(1): 10490, 2020 06 26.
Article En | MEDLINE | ID: mdl-32591591

Tissue stem cell exhaustion is a key hallmark of aging, and in this study, we characterised its manifestation in the distal lung. We compared the lungs of 3- and 22-month old mice. We examined the gross morphological changes in these lungs, the density and function of epithelial progenitor populations and the epithelial gene expression profile. Bronchioles became smaller in their cross-sectional area and diameter. Using long-term EdU incorporation analysis and immunohistochemistry, we found that bronchiolar cell density remained stable with aging, but inferred rates of bronchiolar club progenitor cell self-renewal and differentiation were reduced, indicative of an overall slowdown in cellular turnover. Alveolar Type II progenitor cell density and self-renewal were maintained per unit tissue area with aging, but rates of inferred differentiation into Type I cells, and indeed overall density of Type I cells was reduced. Microarray analysis revealed age-related changes in multiple genes, including some with roles in proliferation and differentiation, and in IGF and TGFß signalling pathways. By characterising how lung stem cell dynamics change with aging, this study will elucidate how they contribute to age-related loss of pulmonary function, and pathogenesis of common age-related pulmonary diseases.


Alveolar Epithelial Cells/physiology , Bronchioles/physiopathology , Stem Cells/physiology , Aging/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Mice , Mice, Inbred C57BL , Respiratory Physiological Phenomena , Signal Transduction/physiology
13.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Article En | MEDLINE | ID: mdl-30995076

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Lung Diseases/pathology , Lung/pathology , Humans , Lung/metabolism , Transcriptome/genetics
14.
J Neurosci ; 38(43): 9228-9239, 2018 10 24.
Article En | MEDLINE | ID: mdl-30228229

New myelin sheaths can be restored to demyelinated axons in a spontaneous regenerative process called remyelination. In general, new myelin sheaths are made by oligodendrocytes newly generated from a widespread population of adult CNS progenitors called oligodendrocyte progenitor cells (OPCs). New myelin in CNS remyelination in both experimental models and clinical diseases can also be generated by Schwann cells (SCs), the myelin-forming cells of the PNS. Fate-mapping studies have shown that SCs contributing to remyelination in the CNS are often derived from OPCs and appear not to be derived from myelinating SCs from the PNS. In this study, we address whether CNS remyelinating SCs can also be generated from PNS-derived cells other than myelinating SCs. Using a genetic fate-mapping approach, we have found that a subpopulation of nonmyelinating SCs identified by the expression of the transcription factor Foxj1 also contribute to CNS SC remyelination, as well as to remyelination in the PNS. We also find that the ependymal cells lining the central canal of the spinal cord, which also express Foxj1, do not generate cells that contribute to CNS remyelination. These findings therefore identify a previously unrecognized population of PNS glia that can participate in the regeneration of new myelin sheaths following CNS demyelination.SIGNIFICANCE STATEMENT Remyelination failure in chronic demyelinating diseases such as multiple sclerosis drives the current quest for developing means by which remyelination in CNS can be enhanced therapeutically. Critical to this endeavor is the need to understand the mechanisms of remyelination, including the nature and identity of the cells capable of generating new myelin sheath-forming cells. Here, we report a previously unrecognized subpopulation of nonmyelinating Schwann cells (SCs) in the PNS, identified by the expression of the transcription factor Foxj1, which can give rise to SCs that are capable of remyelinating both PNS and CNS axons. These cells therefore represent a new cellular target for myelin regenerative strategies for the treatment of CNS disorders characterized by persistent demyelination.


Forkhead Transcription Factors/biosynthesis , Myelin Sheath/metabolism , Remyelination/physiology , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Animals , Central Nervous System/chemistry , Central Nervous System/metabolism , Female , Forkhead Transcription Factors/genetics , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/chemistry , Peripheral Nervous System/chemistry , Peripheral Nervous System/metabolism , Schwann Cells/chemistry , Sciatic Nerve/chemistry , Spinal Cord/chemistry
15.
Development ; 145(16)2018 08 15.
Article En | MEDLINE | ID: mdl-30111617

Recent studies have revealed biologically significant differences between human and mouse lung development, and have reported new in vitro systems that allow experimental manipulation of human lung models. At the same time, emerging clinical data suggest that the origins of some adult lung diseases are found in embryonic development and childhood. The convergence of these research themes has fuelled a resurgence of interest in human lung developmental biology. In this Review, we discuss our current understanding of human lung development, which has been profoundly influenced by studies in mice and, more recently, by experiments using in vitro human lung developmental models and RNA sequencing of human foetal lung tissue. Together, these approaches are helping to shed light on the mechanisms underlying human lung development and disease, and may help pave the way for new therapies.


Embryo, Mammalian , Embryonic Development , Lung Diseases/embryology , Lung/embryology , Models, Biological , Adult , Humans , Lung/pathology , Lung Diseases/pathology
16.
Biol Open ; 7(4)2018 Apr 16.
Article En | MEDLINE | ID: mdl-29661797

The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied, but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone, and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover, knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover, we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition, our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways.This article has an associated First Person interview with the first author of the paper.

17.
Dev Biol ; 433(2): 166-176, 2018 01 15.
Article En | MEDLINE | ID: mdl-29291971

Chronic degenerative lung diseases are essentially untreatable pathological conditions. By contrast, the healthy lung has numerous mechanisms that allow for rapid repair and restoration of function following minor acute injuries. We discuss the normal endogenous processes of lung development, homeostatic maintenance and repair and consider the research strategies required for the development of methods for human therapeutic lung regeneration.


Adult Stem Cells/transplantation , Lung Diseases/therapy , Lung/physiology , Regeneration/physiology , Adult , Alveolar Epithelial Cells/physiology , Animals , Disease Models, Animal , Fibroblasts/physiology , Humans , Lung/blood supply , Lung/cytology , Lung/embryology , Macrophages/physiology , Mesoderm/physiology , Mice , Organogenesis , Organoids/transplantation , Pneumonectomy , Respiratory System/cytology
18.
Elife ; 62017 06 30.
Article En | MEDLINE | ID: mdl-28665271

The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.


Lung/cytology , Organoids/growth & development , Respiratory Mucosa/cytology , Stem Cells/physiology , Animals , Cell Differentiation , Cell Proliferation , Humans , Mice
19.
Curr Pathobiol Rep ; 5(2): 223-231, 2017.
Article En | MEDLINE | ID: mdl-28596933

PURPOSE OF REVIEW: The lung research field has pioneered the use of organoids for the study of cell-cell interactions. RECENT FINDINGS: The use of organoids for airway basal cells is routine. However, the development of organoids for the other regions of the lung is still in its infancy. Such cultures usually rely on cell-cell interactions between the stem cells and a putative niche cell for their growth and differentiation. SUMMARY: The use of co-culture organoid systems has facilitated the in vitro cultivation of previously inaccessible stem cell populations, providing a novel method for dissecting the molecular requirements of these cell-cell interactions. Future technology development will allow the growth of epithelial-only organoids in more defined media and also the introduction of specific non-epithelial cells for the study of cell interactions. These developments will require an improved understanding of the epithelial and non-epithelial cell types present in the lung and their lineage relationships.

20.
Nature ; 545(7654): 292-293, 2017 05 18.
Article En | MEDLINE | ID: mdl-28489827
...